Pour gérer vos consentements :

Transistor en nanotubes de carbone : IBM fait un pas de géant vers la miniaturisation

L’équipe de scientifiques Nanoscale Device & Technology du centre de recherche T. J. Watson (basé à Yorktown Heights dans l’État de New York) d’IBM vient de faire un grand pas dans le domaine des transistors réalisés avec des nanoparticules.

Ils sont en effet parvenus à trouver un moyen de réduire la largeur des connectiques en métal sans en augmenter leur résistance électrique. Normalement, des problèmes d’électromigration se posent à mesure que ces connectiques en métal deviennent moins larges et plus longues.

Le point de contact entre les nanotubes de carbone et le métal va donc pouvoir être réduit, ce qui permettra de diminuer la taille du transistor.

Les chercheurs prévoient qu’il pourra être réduit à 40 atomes de large après 2020 puis à 28 atomes 3 ans plus tard.

L’avancée a fait l’objet d’une publication dans le journal Science.

En réduisant la taille du transistor, sa fréquence de coupure augmentera, ce qui permettra d’obtenir des processeurs ultra-rapides.

IBM avait déjà réussi à créer un transistor doté d’une longueur de grille sous les 10 nanomètres (de 9 nm exactement) en juillet 2013. Pour l’occasion, un premier dispositif à transistors en nanotubes carbone sous les 10 nanomètres avait été testé avec succès.

Cette avancée donne de nouvelles perspectives pour l’après micro-électronique. En effet, les lois de la physique indiquent que les 10 nanomètres (pour la longueur de grille du transistor) signent l’arrêt de mort de la microélectronique actuelle avec transistors en CMOS (Complementary Metal Oxide Semiconductor).

Et jusqu’à présent, les nanotubes carbone faisaient figure de challenger de taille, avec toutefois la limitation relative à la largeur des contacts réalisables.

Rappelons que la technologie mise en oeuvre consiste à développer des transistors en nanotubes de carbone sur un substrat réalisé avec un isolant ultra fin. Les nanotubes de carbone présentent la particularité d’avoir une très grande mobilité électronique.

C’est cette mobilité des électrons élevée qui permet d’obtenir des systèmes véloces à même de jeter les bases de futurs processeurs ultra rapides.

(Crédit photo : koya979, Shuttershock)

Recent Posts

PC Copilot+ : une porte d’entrée vers l’ IA locale ?

Equipés de NPU, les PC Copilot+ peuvent déployer des LLM en local. Un argument suffisant…

2 semaines ago

PCIe 5.0 : La révolution des cartes-mères est-elle en marche ?

Que vous soyez un novice dans le domaine informatique, ou avec un profil plus expérimenté,…

3 semaines ago

Cybersécurité : attention aux QR codes dans les PDF

Les attaques de phishing utilisant des QR codes frauduleux intégrés dans des documents PDF joints…

2 mois ago

Windows 11 : une mise à jour majeure apporte de nouvelles fonctionnalités

Microsoft a amorcé le déploiement de Windows 11 24H2. Passage en revue des nouvelles fonctionnalités…

3 mois ago

Microsoft 365 : comment Copilot se déploie dans toutes les applications

L'intégration de Copilot dans la suite bureautique s'accélère. Où trouver l'assistant IA et comment l'utiliser…

3 mois ago

PC Copilot + : Microsoft veut garder Recall

Microsoft annonce une phase expérimentale pour lancer Recall sur les PC Copilot+. Elle doit commencer…

4 mois ago